1,487 research outputs found

    Hydrodynamic Equation for the Breakdown of the Quantum Hall Effect in a Uniform Current

    Full text link
    The hydrodynamic equation for the spatial and temporal evolution of the electron temperature T_e in the breakdown of the quantum Hall effect at even-integer filling factors in a uniform current density j is derived from the Boltzmann-type equation, which takes into account electron-electron and electron-phonon scatterings. The derived equation has a drift term, which is proportional to j and to the first spatial derivative of T_e. Applied to the spatial evolution of T_e in a sample with an abrupt change of the width along the current direction, the equation gives a distinct dependence on the current direction as well as a critical relaxation, in agreement with the recent experiments.Comment: 4 pages, 1 Postscript figure, corrected equations, to be published in J. Phys. Soc. Jpn. 70 (2001) No.

    Hydrodynamic Equations in Quantum Hall Systems at Large Currents

    Full text link
    Hydrodynamic equations (HDEQs) are derived which describe spatio-temporal evolutions of the electron temperature and the chemical potential of two-dimensional systems in strong magnetic fields in states with large diagonal resistivity appearing at the breakdown of the quantum Hall effect. The derivation is based on microscopic electronic processes consisting of drift motions in a slowly-fluctuating potential and scattering processes due to electron-electron and electron-phonon interactions. In contrast with the usual HDEQs, one of the derived HDEQs has a term with an energy flux perpendicular to the electric field due to the drift motions in the magnetic field. As an illustration, the current distribution is calculated using the derived HDEQs.Comment: 10 pages, 2 Postscript figures, to be published in J. Phys. Soc. Jpn. 71 (2002) No.

    SuprimeCam Observation of Sporadic Meteors during Perseids 2004

    Full text link
    We report the serendipitous findings of 13 faint meteors and 44 artificial space objects by Subaru SuprimeCam imaging observations during 11-16 August 2004. The meteors, at about 100km altitude, and artificial satellites/debris in orbit, at 500km altitude or higher, were clearly discriminated by their apparent defocused image sizes. CCD photometry of the 13 meteors, including 1 Perseid, 1 Aquarid, and 11 sporadic meteors, was performed. We defined a peak video-rate magnitude by comparing the integrated photon counts from the brightest portion of the track traversed within 33ms to those from a 0-mag star during the same time duration. This definition gives magnitudes in the range 4.0< V_{vr} <6.4 and 4.1< I_{vr}<5.9 for these 13 meteors. The corresponding magnitude for virtual naked-eye observers could be somewhat fainter especially for the V-band observation, in which the [OI] 5577 line lasting about 1 sec as an afterglow could contribute to the integrated flux of the present 5-10 min CCD exposures. Although the spatial resolution is insufficient to resolve the source size of anything smaller than about 1 m, we developed a new estimate of the collisionally excited column diameter of these meteors. A diameter as small as a few mm was derived from their collisionally excited photon rates, meteor speed, and the volume density of the oxygen atoms at the 100km altitude. The actual column diameter of the radiating zone, however, could be as large as few 100m because the excited atoms travel that distance before they emit forbidden lines in 0.7 sec of its average lifetime. Among the 44 artificial space objects, we confirmed that 17 were cataloged satellites/space debris.Comment: 14 pages, 13 figures, 5 tables, submitted to PAS

    Multiple Scattering of Fractionally-Charged Quasiparticles

    Full text link
    We employ shot noise measurements to characterize the effective charge of quasiparticles, at filling factor nu=1/3 of the fractional quantum Hall regime, as they scatter from an array of identical weak backscatterers. Upon scattering, quasiparticles are known to bunch, e.g., only three e/3 charges, or 'electrons' are found to traverse a rather opaque potential barrier. We find here that the effective charge scattered by an array of scatterers is determined by the scattering strength of an individual scatterer and not by the combined scattering strength of the array, which can be very small. Moreover, we also rule out intra-edge equilibration of e/3 quasiparticles over length scale of hundreds microns.Comment: 4 pages, 4 figure
    corecore